ON THE AUTOMORPHISMS OF SOME ONE-RELATOR GROUPS

D. Tieudjo and D. I. Moldavanskii
Department of Algebra and Mathematical Logic, Ivanovo State University, Ivanovo, Russia

The description of the automorphism group of group $\left\langle a, b ;\left[a^{m}, b^{n}\right]=1\right\rangle(m, n>1)$ in terms of generators and defining relations is given. This result is applied to prove that any normal automorphism of every such group is inner.

Key Words: Automorphism; Free product with amalgamation; Normal automorphism; One-relator group.

2000 Mathematics Subject Classification: Primary 20F28, 20F05; Secondary 20E06.

INTRODUCTION

The automorphism group of certain one-relator groups was studied by several authors. Collins (1978) obtained the presentation by generators and defining relations of the automorphism group of the Baumslag-Solitar groups $G(l, m)=$ $\left\langle a, b ; a^{-1} b^{l} a=b^{m}\right\rangle$ when $|l|=1$ or $|m|=1$ or $|l|>1,|m|>1$ and l and m are coprime; in particular, in these cases the group Aut $G(l, m)$ turns out to be finitely related. Later Collins and Levin (1983) found the presentation of the group Aut $G(l, m)$ when $m=l s,|l|>1$, and $|s|>1$ and showed thereby that in this case the group $\operatorname{Aut} G(l, m)$ is not finitely generated. In the same article, the more extensive class of groups $G=\left\langle a_{1}, a_{2}, \ldots, a_{n}, t ; t^{-1} w^{l} t=w^{m}\right\rangle$ where w is a word in $a_{1}, a_{2}, \ldots, a_{n}$ was considered. When $n \geq 2, w$ is neither a proper power nor primitive in the free group $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and $m=l s$ with $|s|>1$, authors gave the presentation of group Aut G and this group turns out to be infinitely generated too. Some HNN-extensions of Baumslag-Solitar groups $G(l, m ; k)=$ $\left\langle a, t ; t^{-1} a^{-k} t a^{l} t^{-1} a^{k} t=a^{m}\right\rangle$ were considered by Brunner (1980). In the case when $|l| \neq|m|$, he described all endomorphisms of such groups and noted that if $|l|=1$ or $|m|=1$ then the group Aut $G(m, n ; k)$ is not finitely generated. Using Brunner's results, Kavutskii and Moldavanskii (1988) under assumption $|l| \neq|\mathrm{m}|$ obtained the presentation of Aut $G(m, n ; k)$ and proved that this group is finitely generated if and only if none of the integers l and m is divisor of another. Furthermore, if the group Aut $G(m, n ; k)$ is finitely generated, then it is finitely related. It should be mentioned here that it is still unknown whether the automorphism group of any one-relator group is finitely presented if it is finitely generated.

[^0]Results listing above are relative to one-relator groups which in either case are connected with Baumslag-Solitar groups. In the present article, we consider another class of one-relator groups consisting of groups $G_{m n}$ with presentation

$$
G_{m n}=\left\langle a, b ;\left[a^{m}, b^{n}\right]=1\right\rangle
$$

where m and n are arbitrary integers satisfying inequalities $m>1$ and $n>1$. We obtain the presentation of group Aut $G_{m n}$ by generators and defining relations and thereby prove that it is finitely related. We prove also that any normal automorphism of every group $G_{m n}$ is inner.

As can be immediately verified the following mappings of generators of group $G_{m n}$ define the automorphisms of $G_{m n}$ (which will be denoted by the same symbols):

$$
\begin{array}{ll}
\lambda: a \mapsto a^{-1}, & b \mapsto b ; \\
\mu: a \mapsto a, & b \mapsto b^{-1} ; \\
\nu: a \mapsto a^{-1}, & b \mapsto b^{-1} .
\end{array}
$$

It is evident that $\lambda^{2}=\mu^{2}=1, \lambda \mu=\mu \lambda$, and $\lambda \mu=v$ and therefore these automorphisms together with the identity mapping constitute a subgroup K of group Aut $G_{m n}$, where K is the Klein four-group. If $m=n$, the mapping

$$
\eta: a \mapsto b, \quad b \mapsto a
$$

defines one more automorphism of $G_{m n}$. The relations $\eta^{2}=1, \eta^{-1} \lambda \eta=\mu$, and $\eta^{-1} \mu \eta=\lambda$ (which can also be immediately checked) show that the subgroup L of Aut $G_{m n}$ generated by subgroup K and element η is the split extension of K by the 2-cycle $\langle\eta\rangle$. It will be shown here that if $m \neq n$ then Aut $G_{m n}=K \cdot \operatorname{Inn} G_{m n}$ and if $m=n$, then $\operatorname{Aut} G_{m n}=L \cdot \operatorname{Inn} G_{m n}$. More explicitly, we shall prove the following theorem.

Theorem 1. Let λ, μ, and η be the automorphisms of group $G_{m n}$ defined above and α and β be the inner automorphisms of $G_{m n}$ generated by elements a and b, respectively.

If $m \neq n$, then group Aut $G_{m n}$ is generated by the automorphisms λ, μ, α, and β, and defined by the relations

1. $\lambda^{2}=\mu^{2}=1$;
2. $\lambda \mu=\mu \lambda$;
3. $\lambda^{-1} \alpha \lambda=\alpha^{-1}$;
4. $\lambda^{-1} \beta \lambda=\beta$;
5. $\mu^{-1} \alpha \mu=\alpha$;
6. $\mu^{-1} \beta \mu=\beta^{-1}$;
7. $\alpha^{m} \beta^{n}=\beta^{n} \alpha^{m}$.

If $m=n$, then group Aut $G_{m n}$ is generated by the automorphisms $\lambda, \mu, \eta, \alpha$, and β and defined by the relations $1-7$ and the additional relations
8. $\eta^{2}=1$;
9. $\eta^{-1} \lambda \eta=\mu$;
10. $\eta^{-1} \alpha \eta=\beta$.

Theorem 1 can be applied to characterize the normal automorphisms of groups $G_{m n}$. Let us recall that an automorphism of a group G is said to be normal if it maps onto itself every normal subgroup of G. It is evident that any inner automorphism is normal. In general, the converse is not true. It was proved in Lubotski (1980) and Lue (1980) that any normal automorphism of a noncyclic free group must be inner. Generalizing this result, Neschadim (1996) exhibited that the same assertion is true for any group which is a nontrivial free product. Also he gave the example of one-relator group possessing a normal automorphism which is not inner. Nevertheless, for groups $G_{m n}$ we have the following theorem.

Theorem 2. Any normal automorphism of group $G_{m n}$ is inner.
We note that the residual finiteness of group $G_{m n}$ (i.e., recall, for any nonidentity element $g \in G_{m n}$ there exists a homomorphism φ of group $G_{m n}$ onto some finite group X such that $g \varphi \neq 1$) is well known; it follows, for example, from the result of Baumslag (1983). Since $G_{m n}$ is finitely generated, then by Mal'cev (1940) Theorem, it is Hopfian; i.e., every of its surjective endomorphism is an automorphism. Some other properties of these groups were considered in Tieudjo and Moldavanskii (1998) where, in particular, their construction as amalgamated free product and the description of their endomorphisms were given. These results can be used for somewhat shortening of the proof of our Theorem 1 but for completeness we shall give here an independent proof.

1. PRELIMINARIES

As we have just mentioned, the group $G_{m n}$ can be constructed as amalgamated free product and we begin from some properties of this grouptheoretic construction.

Let $G=(A * B ; H)$ be a free product of groups A and B with amalgamated subgroup H. Then any element $g \in G$ can be written in the form $g=x_{1} x_{2} \ldots x_{s}$, where elements $x_{1}, x_{2}, \ldots, x_{s}$ belong in turns to one of groups A and B and if $s>1$ then no one of them belongs to subgroup H. Such representation is called a reduced form of element g and the number s of factors of it (uniquely determined by g) is called a length of g and denoted by $l(g)$. An element g is said to be cyclically reduced if either $l(g)=1$ or the factors x_{1} and x_{s} of its reduced form $g=x_{1} x_{2} \ldots x_{s}$ do not belong to the same subgroup A or B (the definition is correct since all reduced forms of element g have or do not have this property simultaneously). It is easy to see that any element of G is conjugate with a cyclically reduced element. Moreover, an immediate induction gives the following proposition.

Proposition 1.1. If element g of group $G=(A * B ; H)$ is not cyclically reduced and $l(g)>1$, then g can be written in the form

$$
g=u \cdot v \cdot u^{-1},
$$

where elements u and v have reduced forms $u=x_{1} x_{2} \ldots x_{r}$ and $v=y_{1} y_{2} \ldots y_{s}$ with $r \geq 1$ and $s \geq 1$, element v is cyclically reduced, elements x_{r} and y_{1} do not belong to the same subgroup A or B and if $s>1$, then element $y_{s} x_{r}^{-1}$ does not belong to subgroup H.

By means of Proposition 1.1 it is easy to prove the following proposition.
Proposition 1.2. If the element g of the group $G=(A * B ; H)$ does not belong to subgroup A and if $g^{k} \in A$ for some integer $k \neq 0$, then $g=x^{-1} y x$ for some $x, y \in G$ where the element y belongs to one of subgroups A or B and $y^{k} \in H$.

Also we need the following simple proposition.
Proposition 1.3. Let $G=(A * B ; H)$ and suppose that the amalgamated subgroup H is contained in the centre of both groups A and B. If element $g \in G$ does not belong to subgroup A, then $g^{-1} A g \cap A=H$.

Indeed, the inclusion $H \subseteq g^{-1} A g \cap A$ is evident. To prove the inverse inclusion let ρ be the natural homomorphism of group G onto quotient group G / H which is the ordinary free product of quotients A / H and B / H. Then since $g \rho \notin A \rho$, we have

$$
\left(g^{-1} A g \cap A\right) \rho \subseteq(g \rho)^{-1}(A \rho)(g \rho) \cap(A \rho)=1
$$

and therefore $g^{-1} A g \cap A \subseteq H$.
Further, we need the construction of group $G_{m n}$ in terms of amalgamated free product. For this purpose let $H=\langle c, d ;[c, d]=1\rangle$ be the free Abelian group of rank $2, A=\left(\langle a\rangle * H ; a^{m}=c\right)$ be the amalgamated free product of infinite cycle $\langle a\rangle$ and H and $B=\left(H *\langle b\rangle ; d=b^{n}\right)$ be the amalgamated free product of H and infinite cycle $\langle b\rangle$. Then it is easy to show by means of Tietze transformations that group $G_{m n}$ is isomorphic to the free product $(A * B ; H)$ of groups A and B with amalgamated subgroup H. These notations are assumed in what follows.

Since in constructions of groups A and B the amalgamated subgroups are central in the free factors, Proposition 1.3 gives the following proposition.

Proposition 1.4. If an element g of group A does not belong to subgroup H, then $g^{-1} \mathrm{Hg} \cap H=\langle c\rangle$, and if an element g of group B does not belong to subgroup H, then $g^{-1} H g \cap H=\langle d\rangle$.

Proposition 1.5. Any element g of group $G_{m n}$ such that $g^{-1} H g \cap H \neq 1$ is contained in subgroup A or in subgroup B.

For the proof it is enough to show that if $g=x_{1} x_{2} \ldots x_{s}$ is the reduced form of g with $s>1$, then $g^{-1} H g \cap H=1$. Let us suppose that $x_{1} \in A$; the case $x_{1} \in B$ is considered similarly. For any element $h \in H$, the inclusion $g^{-1} h g \in H$ implies the inclusions $x_{1}^{-1} h x_{1} \in H$ and $x_{2}^{-1}\left(x_{1}^{-1} h x_{1}\right) x_{2} \in H$. Thus, $x_{1}^{-1} h x_{1} \in x_{1}^{-1} H x_{1} \cap H$ and since $x_{1} \in A \backslash H$ it follows from Proposition 1.4 that $x_{1}^{-1} h x_{1}=c^{k}$ for some integer k. Similarly, inclusion $x_{2}^{-1} c^{k} x_{2} \in x_{2}^{-1} H x_{2} \cap H$ gives $x_{2}^{-1} c^{k} x_{2}=d^{l}$ for some integer l, and since element d^{l} lies in the centre of group B, we have the equality $c^{k}=d^{l}$. As elements c and d form the basis of free Abelian group H, hence $k=l=0$ and $h=1$.

Proposition 1.6. Any Abelian subgroup of group $G_{m n}$ which contains a cyclically reduced element of length greater than 1 is cyclic.

Proof. Let U be Abelian subgroup of group $G_{m n}$ and let U contain a cyclically reduced element u of length greater than 1 . It is not difficult to see that any element of $G_{m n}$ commuting with u is either element of H or cyclically reduced of length greater than 1. Since Proposition 1.5 implies $U \cap H=1$ we conclude that all nonidentity elements of U are cyclically reduced of length greater than 1 .

Let u be the nonidentity element of U of the smallest length and $u=u_{1} u_{1} \ldots u_{r}$ be a reduced form of it. We claim that subgroup U is generated by u. Namely, for any nonidentity element $v \in U$ we shall prove by induction on $l(v)$ that v is equal to some power of u.

Let $v=v_{1} v_{2} \ldots v_{s}$ be a reduced form of element v. Replacing, if necessary, element v by element v^{-1}, we can assume that elements u_{1} and v_{1} belong to the same subgroup A or B. Then since elements v_{s} and u_{1} do not belong to the same subgroup A or B and the right side of equation

$$
u_{r}^{-1} \ldots u_{2}^{-1} u_{1}^{-1} v_{1} v_{2} \ldots v_{s} u_{1} u_{2} \ldots u_{r}=v_{1} v_{2} \ldots v_{s}
$$

is cyclically reduced the product $h=u_{r}^{-1} \ldots u_{2}^{-1} u_{1}^{-1} v_{1} v_{2} \ldots v_{r}$ must be element of H. So, if $s=r$ we have $h=u^{-1} v \in U$ and since $U \cap H=1$ we obtain the equality $v=u$ giving the basis of induction.

If $s>r$, then $v=u v^{\prime}$, where $v^{\prime}=h v_{r+1} \ldots v_{s}$. Since $l\left(v^{\prime}\right)<s$, then by induction $v^{\prime}=u^{k}$ for some integer k. Hence $v=u^{k+1}$ and the proof is complete.

2. PROOF OF THEOREM 1

We first prove the following necessary results.
Proposition 2.1. For any automorphism φ of group $G_{m n}$ there exists an inner automorphism ψ of $G_{m n}$ such that either $a(\varphi \psi) \in A$ and $b(\varphi \psi) \in B$ or $a(\varphi \psi) \in B$ and $b(\varphi \psi) \in A$.

Proof. Let φ be an automorphism of group $G_{m n}$ and $u=a \varphi, v=b \varphi$. At first, we note that elements u and v cannot be cyclically reduced of length greater than 1 .

If, on the contrary, element u is cyclically reduced and $l(u)>1$, then element u^{m} is also cyclically reduced of length greater than 1 , and since $\left[u^{m}, v^{n}\right]=1$, by Proposition 1.6, elements u^{m} and v^{n} generate the (infinite) cyclic subgroup. Therefore, $u^{m r}=v^{n s}$ for some nonzero integers r and s. But this equation implies that $a^{m r}=b^{n s}$ which is not satisfied in group $G_{m n}$.

On the other hand, element u is conjugate with a cyclically reduced element and after multiplying φ by suitable inner automorphism, we can assume that u is cyclically reduced. Consequently, by the remark above, $u \in A$ or $u \in B$.

Suppose firstly that $u \in A$. We claim that if $v \notin B$ then $v=x y x^{-1}$ where $x \in A$ and $y \in B$ and therefore $x^{-1} u x \in A$ and $x^{-1} v x \in B$. So, multiplying φ by one more inner automorphism we obtain the desired result.

Since u and v generate the group $G_{m n}$, then $v \notin A$. Hence if $v \notin B$, then $l(v)>1$ and since v is not cyclically reduced it has by Proposition 1.1 the form

$$
v=x_{1} x_{2} \ldots x_{r} \cdot y_{1} y_{2} \ldots y_{s} \cdot\left(x_{1} x_{2} \ldots x_{r}\right)^{-1}
$$

where $r \geq 1, s \geq 1$, element $x_{1} x_{2} \ldots x_{r}$ is reduced, element $y_{1} y_{2} \ldots y_{s}$ is cyclically reduced, elements x_{r} and y_{1} do not belong to the same subgroup A or B and if $s>1$ then element $y_{s} x_{r}^{-1}$ does not belong to subgroup H.

We assert now that the assumption $x_{1} \in B$ leads to the contradiction. To prove this, let us note firstly that if $x_{1} \in B$, then $l\left(v^{n}\right)>1$ and the first syllable of reduced form of v^{n} is x_{1}. This is evident if $s>1$ or if $s=1$ and $y_{1}^{n} \notin H$. If $s=1$, then $y_{1} \in B$ since if $y_{1} \in A$, then elements u and v are contained in the normal closure in $G_{m n}$ of subgroup A and therefore cannot generate the group $G_{m n}$. Hence $x_{r} \in A$ and $r>1$. If $y_{1}^{n} \in H$ then $y_{1}^{n} \in y_{1}^{-1} H y_{1} \cap H$ and by Proposition $1.4 y_{1}^{n}=d^{k}$ for some integer $k \neq 0$. Therefore $x_{r} y_{1}^{n} x_{r}^{-1} \in A \backslash H, l\left(v^{n}\right)=2 r-1>1$ and the first syllable of reduced form of v^{n} is x_{1}.

Now, since $x_{1} \in B$ the equality $v^{-n} u^{m} v^{n}=u^{m}$ implies inclusions $u^{m} \in H$ and $x_{1}^{-1} u^{m} x_{1} \in H$. Since $u \in A \backslash H$ (because the quotient group of $G_{m n}$ by the normal closure of H is not cyclic) and $x_{1} \in B \backslash H$ the Proposition 1.4 implies that $u^{m}=1$, a contradiction.

So, $x_{1} \in A$. If v does not have the form claimed above, then $r>1$ and elements $u_{1}=x_{1}^{-1} u x_{1}$ and $v_{1}=x_{1}^{-1} v x_{1}$ turn out to be in the previous case.

Thus, we have proved that if element $u=a \varphi$ belongs to subgroup A, then after multiplying, if necessary, automorphism φ by one more inner automorphism we have $u \in A$ and $v \in B$. Similar arguments will show that if element $u=a \varphi$ belongs to subgroup B, then after multiplying, if necessary, automorphism φ by one more inner automorphism we get $u \in B$ and $v \in A$.

Proposition 2.2. Let elements u and v of group $G_{m n}$ be such that $u \in A \backslash H, v \in B \backslash H$ and $\left[u^{r}, v^{s}\right]=1$ for some integers $r \neq 0$ and $s \neq 0$. Then $u=x^{-1} a^{k} x$ and $v=y^{-1} b^{l} y$ where $x \in A, y \in B$, and nonzero integers k and l are such that $k r$ is divided by m and $l s$ is divided by n.

Proof. We note, firstly, that $u^{r} \in H$ and $v^{s} \in H$. Indeed, if, say, $u^{r} \notin H$, then since $u^{r} \in A, v^{s} \in B$ and $\left[u^{r}, v^{s}\right]=1$ we get $v^{s} \in H$. Hence $v^{s}=u^{-r} v^{s} u^{r} \in H \cap u^{-r} H u^{r}$ and $v^{s}=v^{-1} v^{s} v \in H \cap v^{-1} H v$. Proposition 1.4 implies now that $v^{s}=1$ which is impossible.

Since $u \in A \backslash H$ and $u^{r} \in H$, then Proposition 1.2, applied to the group $A=$ $\left(\langle a\rangle * H ; a^{m}=c\right)$, gives $u=x^{-1} z x$ where $x \in A$, element z is contained in subgroup $\langle a\rangle$ or in subgroup H and element z^{r} belongs to subgroup $\left\langle a^{m}\right\rangle$. But if $z \in H$, then the inclusion $z^{r} \in\langle c\rangle$ is possible only if $z \in\langle c\rangle$. Thus, in any case $z=a^{k}$ for some integer $k \neq 0$ and m divides $k r$ because $z^{r} \in\left\langle a^{m}\right\rangle$.

So, we have proved that u has the required form. The assertion on the element v is proved similarly.

We remind that group $G_{m n}$ is isomorphic to the amalgamated free product $(A * B ; H)$, where $A=\left(\langle a\rangle * H ; a^{m}=c\right), B=\left(H *\langle b\rangle ; d=b^{n}\right)$, and $H=$ $\langle c, d ;[c, d]=1\rangle$.

Proposition 2.3. Let F be the subgroup of group $G_{m n}$ generated by elements $x^{-1} a^{k} x$ and $y^{-1} b^{l} y$ where $x \in A, y \in B$, and $k, l \in \mathbb{Z}$. Then $F=G_{m n}$ if and only if $|k|=1=|l|$ and $x \in\langle a\rangle \cdot\langle d\rangle, y \in\langle b\rangle \cdot\langle c\rangle$.

Proof. If $|k|=1=|l|$ and $x=a^{p} d^{q}, y=b^{r} c^{s}$ for some integers p, q, r, s, then elements $c=\left(x^{-1} a x\right)^{m}$ and $d=\left(y^{-1} b y\right)^{n}$ belong to subgroup F and since $a=$ $d^{q}\left(x^{-1} a x\right) d^{-q}$ and $b=c^{s}\left(y^{-1} b y\right) c^{-s}$ we have $a \in F$ and $b \in F$ and therefore $F=G_{m n}$.

Conversely, let us suppose that $F=G_{m n}$. Then the quotient group of $G_{m n}$ by its commutator subgroup $G_{m n}^{\prime}$ is generated by elements a^{k} and b^{l} and since $G_{m n} / G_{m n}^{\prime}$ is the free Abelian group with basis a, b we must have $|k|=1=|l|$.

Let A_{1} denote the subgroup of $G_{m n}$ generated by subgroup H and element $x^{-1} a x$ and let B_{1} denote the subgroup of $G_{m n}$ generated by subgroup H and element $y^{-1} b y$. Since $H \leq A_{1} \leq A$ and $H \leq B_{1} \leq B$, it follows by the theorem of H. Neumann (see e.g., Neumann, 1954, p. 512) that the subgroup F_{1} generated by A_{1} and B_{1} is the free product of groups A_{1} and B_{1} with amalgamated subgroup H and $A \cap$ $F_{1}=A_{1}, B \cap F_{1}=B_{1}$. Therefore, since $F \leq F_{1}$ the equality $F=G_{m n}$ implies $A_{1}=A$ and $B_{1}=B$.

Now we shall prove that if $A_{1}=A$, then $x \in\langle a\rangle \cdot\langle d\rangle$. Let $x=x_{1} x_{2} \ldots x_{r}$ be the reduced form of element x (in the decomposition of group A in amalgamated product $\left.A=\left(\langle a\rangle * H ; a^{m}=c\right)\right)$.

If $x \notin\langle a\rangle \cdot\langle d\rangle$, then $r \geq 2$ and if $r=2$, then $x_{1} \in H$ and $x_{2} \in\langle a\rangle$. If $r>2$ and $x_{1} \in\langle a\rangle$, then letting $x^{\prime}=x_{2} x_{3} \ldots x_{r}$ we see that subgroup A_{1} is generated by subgroup H and element $\left(x^{\prime}\right)^{-1} a\left(x^{\prime}\right)$. Now if $x_{r} \in H$, then $r>3$ and letting $x^{\prime \prime}=$ $x_{2} x_{3} \ldots x_{r-1}$ we see that subgroup A_{1} is generated by subgroup H and element $\left(x^{\prime \prime}\right)^{-1} a\left(x^{\prime \prime}\right)$. Thus, we have shown that if $x \notin\langle a\rangle \cdot\langle d\rangle$, then we can assume without loss of generality that $r \geq 2$ and $x_{1} \in H, x_{r} \in\langle a\rangle$.

Let \bar{A} be the quotient of group A by central subgroup $\left\langle a^{m}\right\rangle$ and \bar{g} denote the image of element $g \in A$ under the natural homomorphism of A to \bar{A}. Then \bar{A} is the ordinary free product of cyclic group $\langle\bar{a}\rangle$ of order m and of infinite cycle $\langle\bar{d}\rangle$. The image \bar{A}_{1} of subgroup A_{1} is generated by element \bar{d} and by image $\overline{x^{-1} a x}$ of element $x^{-1} a x$. Our assumptions about x imply that

$$
\bar{x}_{r}^{-1} \ldots \bar{x}_{2}^{-1} \bar{x}_{1}^{-1} \bar{a} \bar{x}_{1} \bar{x}_{2} \ldots \bar{x}_{r}
$$

is the reduced form of element $\overline{x^{-1} a x}$. This in turn implies that any alternating product of nonidentity powers of elements $\overline{x^{-1} a x}$ and \bar{d} is reduced as written. Thus, $\bar{A}_{1} \neq \bar{A}$ (since $\bar{a} \notin \bar{A}_{1}$) and hence $A_{1} \neq A$. Consequently, the equality $A_{1}=A$ really implies the inclusion $x \in\langle a\rangle \cdot\langle d\rangle$ and the same arguments will show that the equality $B_{1}=B$ implies the inclusion $y \in\langle b\rangle \cdot\langle c\rangle$.

Now we can complete the proof of Theorem 1. Let φ be an automorphism of group $G_{m n}$. Proposition 2.1 implies that for some inner automorphism ψ of $G_{m n}$ we shall get either $a(\varphi \psi) \in A$ and $b(\varphi \psi) \in B$ or $a(\varphi \psi) \in B$ and $b(\varphi \psi) \in A$.

Firstly, let us consider the case when $a(\varphi \psi) \in A$ and $b(\varphi \psi) \in B$. Since elements $a(\varphi \psi)$ and $b(\varphi \psi)$ generate the group $G_{m n}$ and hence no one of them belong to subgroup H, it follows from Proposition 2.2 that $a(\varphi \psi)=x^{-1} a^{k} x$ and $b(\varphi \psi)=$ $y^{-1} b^{l} y$ for some $x \in A, y \in B$, and nonzero integers k and l. Now, Proposition 2.3 implies that $a(\varphi \psi)=d^{-p} a^{\varepsilon} d^{p}$ and $b(\varphi \psi)=c^{-q} b^{\delta} c^{q}$ for some integers p and q and $\varepsilon, \delta= \pm 1$. Then the product of $\varphi \psi$ by the inner automorphism generated by element $c^{-q} d^{-q}$ belongs to subgroup K and therefore $\varphi \in K \cdot \operatorname{Inn} G_{m n}$.

Now, let $a(\varphi \psi) \in B$ and $b(\varphi \psi) \in A$. Then by Proposition $2.2 a(\varphi \psi)=y^{-1} b^{l} y$ and $b(\varphi \psi)=x^{-1} a^{k} x$ for some $x \in A, y \in B$, and nonzero integers k and l where $k n$ is
divided by m and $l m$ is divided by n. Since Proposition 2.3 again gives $|k|=1=|l|$, conditions of divisibility imply the equality $m=n$. Thus, if $m \neq n$, then Aut $G_{m n}=$ $K \cdot \operatorname{Inn} G_{m n}$.

If $m=n$, then the group $G_{m n}$ has the automorphism η and since $A \eta=B$ and $B \eta=A$ we obtain $a(\varphi \psi \eta) \in A$ and $b(\varphi \psi \eta) \in B$. Therefore, automorphism $\varphi \psi \eta$ belongs to subgroup $K \cdot \operatorname{Inn} G_{m n}$. This means that $\varphi \in L \cdot \operatorname{Inn} G_{m n}$. Thus, in the case $m=n$ we obtain Aut $G_{m n}=L \cdot \operatorname{Inn} G_{m n}$.

The validity of relations $1-10$ in the statement of Theorem 1 can be checked immediately (and this in part was singled out above) and it remains to show that these relations do define the group Aut $G_{m n}$. Making use of relations 3-6 in the case $m \neq n$ and of relations 3-6 and 10 in the case $m=n$, any relation in the pointed out generators of Aut $G_{m n}$ can be transformed to the form $u v=1$ where u is a product of elements λ and μ (or λ, μ and η) and v is a product of elements α and β. Since the unit is the only element of subgroups K and L inducing the identity automorphism of quotient group $G_{m n} / G_{m n}^{\prime}$, we can conclude that

$$
K \cap \operatorname{Inn} G_{m n}=1 \quad \text { and } \quad L \cap \operatorname{Inn} G_{m n}=1
$$

and therefore the relation $u v=1$ implies $u=1$ and $v=1$. Since relations 1 and 2 define the group K and relations $1,2,8$, and 9 define the group L, the relation $u=1$ is derivable from the relations singled out in Theorem. Since the presentation above of group $G_{m n}$ as amalgamated free product with regard to Corollary 4.5 in Magnus et al. (1966) makes evident the triviality of its centre, the group $\operatorname{Inn} G_{m n}$ is isomorphic to $G_{m n}$ and therefore the relation $v=1$ must be derivable from relation 7. Thus, any relation in the indicated generators of group Aut $G_{m n}$ is derivable from the relations $1-10$ and the proof is complete.

3. PROOF OF THEOREM 2

We begin with a rather obvious remark. If φ is a normal automorphism of a group G and if N is a normal subgroup of group G, then the mapping $\bar{\varphi}$ of the factor group G / N onto itself, defined by

$$
(g N) \bar{\varphi}=(g \varphi) N \quad(g \in G),
$$

is an automorphism of group G / N and this automorphism is normal too. The automorphism $\bar{\varphi}$ is said to be induced by automorphism φ.

Now, let φ be a normal automorphism of group $G_{m n}$. Then by Theorem $1 \varphi=$ $\xi \psi$ where $\psi \in \operatorname{Inn} G_{m n}$ and $\xi \in K$ if $m \neq n$ or $\xi \in L$ if $m=n$. Since automorphism φ is normal if and only if the automorphism ξ is normal, it remains to show that any nonidentity element of subgroups K and L is not normal automorphism.

Let M and N denote the normal closure in group $G_{m n}$ of elements a^{m} and b^{n} respectively. Then the quotient group $G_{m n} / M$ is the free product of cycle $\langle a\rangle$ of order m and infinite cycle $\langle b\rangle$ and the quotient group $G_{m n} / N$ is the free product of infinite cycle $\langle a\rangle$ and cycle $\langle b\rangle$ of order n.

Since the orders of elements $a M$ and $b M$ of the group $G_{m n} / M$ are different, then any automorphism of form $\kappa \eta$ where $\kappa \in K$ does not induce any automorphism of this quotient and therefore is not normal by the remark above.

In the same quotient group $G_{m n} / M$ the elements $b M$ and $(b M)^{-1}$ are not conjugate, since two elements of a free factor of an ordinary free product are conjugate if and only if they are conjugate in the factor. Therefore, automorphisms $\bar{\mu}$ and \bar{v} of group $G_{m n} / M$, induced by the automorphisms μ and v respectively, are not inner and consequently, by the mentioned above result in Neschadim (1996), $\bar{\mu}$ and \bar{v} are not normal. Hence, from the remark above, it follows that automorphisms μ and v of group $G_{m n}$ are not normal. Analogously, automorphism λ induces a noninner automorphism in the quotient $G_{m n} / N$ and therefore is not normal. Theorem 2 is demonstrated.

REFERENCES

Baumslag, G. (1983). Free subgroups of certain one-relator groups defined by positive words. Math. Proc. Camb. Phil. Soc. 93:247-251.
Brunner, A. M. (1980). On a class of one-relator groups. Can. J. Math. 32(2):414-420.
Collins, D. J. (1978). The automorphism towers of some one-relator groups. Proc. London Math. Soc. 36:480-493.
Collins, D. J., Levin, F. (1983). Automorphisms and hopficity of certain Baumslag-Solitar groups. Arch. Math. 40:385-400.
Kavutskii, M., Moldavanskii, D. (1988). On the class of one-relator groups. In: Algebraic and Discrete Systems. Ivan. State Univ. 35-48 (Russian).
Lubotski, A. (1980). Normal automorphisms of free groups. J. Algebra 63(2):494-498.
Lue, A. S.-T. (1980). Normal automorphisms of free groups. J. Algebra 64(1):52-53.
Magnus, W., Karrass, A., Solitar, D. (1966). Combinatorial Group Theory. New York, London, Sydney: John Wiley and Sons, Inc.
Mal'cev, A. I. (1940). On isomorphic representation of infinite groups by matrixes. Math. Sbornik 8:405-422 (Russian).
Neschadim, M. V. (1996). Free products of groups do not have outer normal automorphisms. Algebra and Logic 35(5):562-566 (Russian).
Neumann, B. H. (1954). An assay on free products of groups with amalgamations. Phil. Trans. Royal Soc. of London 246:503-554.
Tieudjo, D., Moldavanskii, D. I. (1998). Endomorphisms of the group $G_{m n}=\langle a, b$; $\left.\left[a^{m}, b^{n}\right]=1\right\rangle(m, n>1)$. Afrika Matematika, J. of African Math. Union Series 3(9):11-18.

[^0]: Received April 15, 2004; Revised February 15, 2006. Communicated by C. Cibils.
 Address correspondence to D. Tieudjo, Department of Mathematics and Computer Science, University of Ngaoundere, P.O. Box 454 Ngaoundere, Cameroon; E-mail: tieudjo@yahoo.com

